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Overview

• Refs.: chap. 4 of Acheson, chap, 10 of Çengel, Faber.
• For irrotational flow, ∇×𝑉 = 0, which implies that 𝑉 = ±∇𝜙.
• 𝜙 is a scalar field called the potential flow function.

• If the fluid is incompressible, then the continuity equation 
implies that ∇ ) 𝑉 = 0.
• In this case the potential flow function satisfies the Laplace 

equation

•We can obtain many velocity fields using the techniques
used to solve Laplace’s equation.
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Flow potential
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Consider

𝜙 is a single valued function if

which is equivalent to 

that is, the flow is irrotational (zero vorticity).

For irrotational flow, the velocity field is the gradient of a scalar flow potential 𝜙:

and two similar equations by
exchanging 1 or 2 by 3.

and similar equations
for 1 and 2.



Velocity field
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Given the flow potential, the velocity field is obtained from its gradient: 
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Example (schematic)
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∇!𝜙 = 0

∇!𝜙 = 0



Examples (solutions of Laplace’s equation)
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Airfoil in free stream

Cylinder in free stream



Examples
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Re=10000



Ex.: 

Find the potential flow.



Back to Laplace’s equation
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In cartesian coordinates

In cylindrical coordinates

Spherical and mixed coordinates may also be useful.



• The beauty of this is that we have combined three unknown velocity
components (e.g., u, v, and w) into one unknown scalar field 𝜙, 
eliminating two of the equations required for a solution.
• Once we obtain a solution, we can calculate all three components of

the velocity field.

• The Laplace equation is well known since it shows up in several fields
of physics, applied mathematics, and engineering. Various solution
techniques, both analytical and numerical, are available in the
literature. 
• Solutions of the Laplace equation are dominated by the geometry

(i.e., boundary conditions).

• The solution is valid for any incompressible fluid, regardless of its
density or its viscosity, in regions of the flow in which the irrotational
approximation is appropriate
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Pressure
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Of course we still need a dynamical equation to calculate the pressure field.
This will be given by the Euler equation.

If gravity is the only body force, then

Or in its integrated form, the Bernoulli equation

Since the flow is irrotational, we can apply Bernoulli to ANY two points in the
flow domain.



Stream function

• For irrotational flows in 2D, the stream function obeys the Laplace 
equation:

∇!𝜓 = 0.

• In potential 2D flow, both the flow potential and the stream function
are solutions of the Laplace equation. 

• Lines of constant flow potential are perpendicular to the streamlines
(check). 

• In axisymmetric flows the stream function obeys a linear equation
but that is no longer Laplace’s equation.

15



Stream function
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Generic coordinate system (only in 2D)

Important property: ψ is constant along a streamline.

For incompressible 2D flows:

Prove it



Complex potential
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The complex potential is also a solution of the Laplace equation



Kelvin’s circulation theorem

• An ideal fluid that is vorticity free at a given instant is vorticity free at 
all times.
• Demonstration: see Faber 120-122 

• In three dimensions the conservation of vorticity (which corresponds 
to the conservation of angular momentum in mechanics) takes a 
somewhat subtle form.

• The circulation of a velocity field is defined to be

where the line is a closed loop which moves with the fluid.
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Circulation and vorticity

• By Stokes’ theorem

where S(t) is a surface whose edges connect with C(t).

K is zero for all loops if Ω is zero in the domain! 

Kelvin´s theorem asserts that
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𝐾 Ω

𝐷𝐾



Superposition

• Since the Laplace equation is a linear homogeneous differential
equation, the linear combination of two or more solutions of the
equation must also be a solution. 
• For example, if 𝜙1 and 𝜙! are each solutions of the Laplace 

equation, then A 𝜙" + B 𝜙! are also solutions, where A and B are 
arbitrary constants. 
• By extension, you may combine several solutions of the Laplace 

equation, and the combination is guaranteed to also be a solution.
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Uniform (free) stream
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Line source or sink
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Let the volume flow rate per unit depth, be the line source
strength, m

With solution

The components of the velocity are 



Line source or sink at an arbitrary point
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Superposition of a source and sink of equal
strength
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Using



Line vortex
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The radial component of the velocity is zero and

where Γ = 2𝜋𝑟𝑢", is the circulation, around a loop of radius r. 

Then,



Superposition of a line sink and a line vortex
at the origin
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The stream function is

with streamlines

Note that velocity diverges at the origin, which is a singularity (unphysical).



Sources and sinks

• The 1/R potential is a solution of Laplace´s equation in 
3D 
• It describes isotropic flow with velocity

• If Q > 0 it is a source and it is a sink otherwise. Q is the discharge rate.

• Free stream potential

• Superposition of the two gives
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(Faber 4.4)



• Or in spherical coordinates,
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Sources and sinks



Excess pressure and force 
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The excess pressure vanishes at infinity where the velocity is that of the free stream. 
Then Bernoulli gives for the dynamical pressure: 
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Total force in the direction x, exerted by this excess of pressure on the fluid inside a 
spherical control surface centered on O, of an arbitrary R.



Rate of change of momentum

• The total force is equal to the rate of change of momentum in the x 
direction of the fluid, within the sphere:
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Reynolds transport theorem:



Rate of change of momentum

• There is then an additional force on the fluid in the x direction of 
magnitude
• This has to be exerted by the source (sink) and thus the source (sink) 

will experience a reaction force  
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Two equal sources
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On the plane bissecting the line joining the two sources the normal component of the
velocity vanishes. The radial component (in the direction of OP), add and are given by:

𝑟 =
𝑑

cos 𝜃
= 𝑑 sec 𝜃

Velocity at one source, due
to the other:



Excess pressure and force

• Assuming that the excess pressure vanishes at infinity, where u also
vanishes, the excess pressure at P is (Bernoulli),

• The fluid to the left of the bissecting plane experiences a force due to 
this excess pressure, given by 
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Analytical solutions of Laplace’s equation
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47

Ex.:



49

Laplacian in spherical coordinates



50



Potential flow around a sphere
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Faber 4.7



Excess pressure
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With p*defined to be zero at large distances, we have



Lift & drag forces

• The component of the resultant pressure and shear forces that acts
in the flow direction is called the drag force (or just drag), and the
component that acts normal to the flow direction is called the lift
force (or just lift).
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drag

lift



D’Alembert’s paradox: In 
irrotational flow , the
aerodynamic drag force 
on any body of any shape 
immersed
in a uniform stream is 
zero.

“It seems to me that the theory 
(potential flow), developed in all 
possible rigor, gives, at least in 
several cases, a strictly vanishing 
resistance, a singular paradox which I 
leave to future Geometers [i.e. 
mathematicians - the two terms were 
used interchangeably at that time] to 
elucidate” 
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Drag force
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In a real flow, the pressure on the back surface of the body is significantly
less than that on the front surface, leading to a nonzero pressure drag on
the body. In addition, the no-slip condition on the body surface leads to a 
nonzero viscous drag as well. 

Thus, the irrotational flow falls short in its prediction of aerodynamic drag
for two reasons: it predicts no pressure drag and it predicts no viscous
drag.



Different regimes
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www.youtube.com/watch?v=fcjaxC-e8oY



Potential flow around a sphere and Magnus 
effect
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TP



sphere
Due to high speed flow 
at the top of the sphere, 
we expect a low pressure 
at the top of the sphere. 
This pressure results in a 
lift force on the 
hemsiphere.

Solid hemisphere on a flat plate



Flow over a circular cylinder

70



Doublet: line source and sink close to origin
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We have seen before that

By Taylor expanding the arctan around zero:



Doublet: line source and sink close to origin
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Let a tend to zero at constant doublet strength K, to find



Superposition of a uniform stream and a doublet: 
Flow over a circular cylinder
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